Abstract

In this study, a highly crystallizable and an amorphous polylactide (i.e., cPLA and aPLA) with, respectively, low (0.5 mol. %) and high (12 mol. %) d-lactic acid contents and similar molecular weights were melt compounded with two different multifunctional epoxy-based Joncryl chain extenders (CEs, i.e., ADR 4400 and 4468) at 190 °C. Reactivity of Joncryl grades with aPLA was also explored at melt processing temperatures of 150, 170, and 210 °C. Small amplitude oscillatory shear rheological analysis was conducted to understand the extent of the Joncryl reaction with PLA molecules, and the results were confirmed with molecular weight determination using gel permeation chromatography. Extensional viscosity of the processed samples was also compared to control their strain hardening behavior. Results showed that the Joncryl reaction with cPLA and aPLA differs in terms of preference for chain extension or branching, indicating that molecular regularity affected the interactions with both Joncryl grades during reactive melt processing. Moreover, although the increase in processing temperature accelerated PLA degradation, it noticeably increased the reactivity of both Joncryl grades with aPLA. In all cases, ADR 4468 was more reactive in molecular chain extension/branching due to its higher functionality than ADR 4400. Differential scanning calorimetry results also revealed that the crystallization of cPLA was differently affected by the change in the Joncryl content and type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call