Abstract

We generalize the Guth–Katz joints theorem from lines to varieties. A special case says that N planes (2-flats) in 6 dimensions (over any field) have O(N^{3/2}) joints, where a joint is a point contained in a triple of these planes not all lying in some hyperplane. More generally, we prove the same bound when the set of N planes is replaced by a set of 2-dimensional algebraic varieties of total degree N, and a joint is a point that is regular for three varieties whose tangent planes at that point are not all contained in some hyperplane. Our most general result gives upper bounds, tight up to constant factors, for joints with multiplicities for several sets of varieties of arbitrary dimensions (known as Carbery’s conjecture). Our main innovation is a new way to extend the polynomial method to higher dimensional objects, relating the degree of a polynomial and its orders of vanishing on a given set of points on a variety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.