Abstract
Reconfigurable Intelligent Surfaces (RIS) have been highlighted by the research community as a key enabling technology for the enhancement of next-generation wireless network performance, including energy efficiency, spectral efficiency, and network throughput. This paper investigates how RIS-assisted communication can effectively maximize the downlink throughput of a cellular network. Specifically, the paper considers a communication scenario where a single base station serves multiple ground users with the aid of an RIS placed on a building facade. For such a communication scenario, we considered an optimization problem aimed at maximizing the overall downlink throughput by jointly optimizing power allocation at the base station and phase shift of RIS reflecting elements, subject to power consumption and quality-of-service constraints. To address its non-convex nature, the original optimization problem has been divided into two subproblems. The first one, for power control with fixed phase shift values, is a convex problem that can be easily solved. Subsequently, a phase shift searching procedure to solve the non-convex problem of RIS phase shift optimization has been adopted. The results from numerical simulations show that the proposed method outperforms other conventional methods proposed in the literature. In addition, computational complexity analysis has been conducted to prove the low complexity of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: EAI Endorsed Transactions on Industrial Networks and Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.