Abstract
Hand belongs to non-rigid objects and is rich in variety, making gesture recognition more difficult. The essence of dynamic gesture recognition is the classification and recognition of single-frame still images. Therefore, this paper mainly focuses on static gesture recognition. At present, there are some problems in gesture recognition, such as accuracy, real-time or poor robustness. To solve the above problems, in this paper, the Kinect sensor is used to obtain the color and depth gesture samples, and the gesture samples are processed. On this basis, a jointly network of CNN and RBM is proposed for gesture recognition. It mainly uses superposed network of multiple RBMs to carry out unsupervised feature extraction and combined with supervised feature extraction of CNN. Finally, these two features are combined to classify them. The simulation results show that the proposed jointly network has a better performance in identifying simple background gesture samples and the recognition capability of gesture samples in complex background needs to be improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.