Abstract

Tactile signals collected by wearable electronics are essential in modeling and understanding human behavior. One of the main applications of tactile signals is action classification, especially in healthcare and robotics. However, existing tactile classification methods fail to capture the spatial and temporal features of tactile signals simultaneously, which results in sub-optimal performances. In this paper, we design Spatio-Temporal Aware tactility Transformer (STAT) to utilize continuous tactile signals for action classification. We propose spatial and temporal embeddings along with a new temporal pretraining task in our model, which aims to enhance the transformer in modeling the spatio-temporal features of tactile signals. Specially, the designed temporal pretraining task is to differentiate the time order of tubelet inputs to model the temporal properties explicitly. Experimental results on a public action classification dataset demonstrate that our model outperforms state-of-the-art methods in all metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.