Abstract

Crowd flow prediction is a vital problem for an intelligent transportation system construction in a smart city. It plays a crucial role in traffic management and behavioral analysis, thus it has raised great attention from many researchers. However, predicting crowd flows timely and accurately is a challenging task that is affected by many complex factors such as the dependencies of adjacent regions or recent crowd flows. Existing models mainly focus on capturing such dependencies in spatial or temporal domains and fail to model relations between crowd flows of distant regions. We notice that each region has a relatively fixed daily flow and some regions (even very far away from each other) may share similar flow patterns which show strong correlations among them. In this article, we propose a novel model named Double-Encoder which follows a general encoder–decoder framework for multi-step citywide crowd flow prediction. The model consists of two encoder modules named ST-Encoder and FR-Encoder to model spatial-temporal dependencies and daily flow correlations, respectively. We conduct extensive experiments on two real-world datasets to evaluate the performance of the proposed model and show that our model consistently outperforms state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.