Abstract
Highly realistic imaging and video synthesis have become possible and relatively simple tasks with the rapid growth of generative adversarial networks (GANs). GAN-related applications, such as DeepFake image and video manipulation and adversarial attacks, have been used to disrupt and confound the truth in images and videos over social media. DeepFake technology aims to synthesize high visual quality image content that can mislead the human vision system, while the adversarial perturbation attempts to mislead the deep neural networks to a wrong prediction. Defense strategy becomes difficult when adversarial perturbation and DeepFake are combined. This study examined a novel deceptive mechanism based on statistical hypothesis testing against DeepFake manipulation and adversarial attacks. First, a deceptive model based on two isolated sub-networks was designed to generate two-dimensional random variables with a specific distribution for detecting the DeepFake image and video. This research proposes a maximum likelihood loss for training the deceptive model with two isolated sub-networks. Afterward, a novel hypothesis was proposed for a testing scheme to detect the DeepFake video and images with a well-trained deceptive model. The comprehensive experiments demonstrated that the proposed decoy mechanism could be generalized to compressed and unseen manipulation methods for both DeepFake and attack detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.