Abstract

Autism spectrum disorder (ASD) is characterized by poor social communication abilities and repetitive behaviors or restrictive interests, which has brought a heavy burden to families and society. In many attempts to understand ASD neurobiology, resting-state functional magnetic resonance imaging (rs-fMRI) has been an effective tool. However, current ASD diagnosis methods based on rs-fMRI have two major defects. First, the instability of rs-fMRI leads to functional connectivity (FC) uncertainty, affecting the performance of ASD diagnosis. Second, many FCs are involved in brain activity, making it difficult to determine effective features in ASD classification. In this study, we propose an interpretable ASD classifier DeepTSK, which combines a multi-output Takagi-Sugeno-Kang (MO-TSK) fuzzy inference system (FIS) for composite feature learning and a deep belief network (DBN) for ASD classification in a unified network. To avoid the suboptimal solution of DeepTSK, a joint optimization procedure is employed to simultaneously learn the parameters of MO-TSK and DBN. The proposed DeepTSK was evaluated on datasets collected from three sites of the Autism Brain Imaging Data Exchange (ABIDE) database. The experimental results showed the effectiveness of the proposed method, and the discriminant FCs are presented by analyzing the consequent parameters of Deep MO-TSK.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call