Abstract

Basaltic volcanic eruptions typically initiate as fissures fed by dikes. In some cases, eruptions become localized through discrete vents, until the flow is sustained through a single vent underlain by a volcanic plug, at which point, the eruption is capable of delivering much greater volumes of magma to the surface. Existing theories to explain flow localization focus on the relationship between non-uniform dike thickness and variations in magma flow rates. Here, we propose a mechanism for conduit widening that precedes flow localization, and we present geologic evidence from an Oligocene-aged dike-plug system at Ship Rock, New Mexico. We use techniques of structure from motion to map 621 joints in the sedimentary rock adjacent to the intrusions and find that these joints are part of a systematic set oriented perpendicular to the dikes and localized to within a meter of the dike contacts. This joint set, along with a set of dike-parallel joints and the bedding planes, divides the strata into rectangular blocks that subsequently are entrained in the flowing magma to widen the dikes. Using field and lab data and a stress analysis, we show that the dike-perpendicular joints are intimately associated with the emplacement of magma and thermal pressurization of pore fluids in the host rock. This fracturing process is a precursor to entrainment of the host rock and sustained flow through discrete vents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.