Abstract
Millimetre-wave (mmWave) 5G communications is an emerging technology to enhance the capacity of existing systems by thousand-fold improvement. Heterogeneous networks employing densely distributed small cells can optimise the available coverage and throughput of 5G systems. Efficiently utilising the spectrum bands by small cells is one of the approaches that will considerably increase the available data rate and capacity of the heterogeneous networks. This challenging task can be achieved by spectrum sensing capability of cognitive radios and new modulation techniques for data transmission. In this study, a wavelet-based filter bank is proposed for spectrum sensing and modulation in 5G heterogeneous networks. The proposed technique can mitigate the spectral leakage and interference by adapting the subcarriers according to cognitive information provided by wavelet packet based spectrum sensing (WPSS) and lowering sidelobes using wavelet-based filter bank multicarrier modulation. The performance improvement of WPSS compared with Fourier-based spectrum sensing is verified in terms of power spectral density comparison and probabilities of detection and false alarm. Meanwhile, the bit error rate performance demonstrates the superiority of the proposed wavelet-based system compared with its Fourier-based counterpart over the 60 GHz mmWave channel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.