Abstract

To efficiently allocate heterogeneous resources for customized services, in this article, we propose a network virtualization (NV)-based network architecture in cybertwin-enabled 6G core networks. In particular, we investigate how to optimize the virtual network (VN) topology (which consists of several virtual nodes and a set of intermediate virtual links) and determine the resultant VN embedding in a joint way over a cybertwin-enabled substrate network. To this end, we formulate an optimization problem whose objective is to minimize the embedding cost, while ensuring that the end-to-end (E2E) packet delay requirements are satisfied. The queueing network theory is utilized to evaluate each service’s E2E packet delay, which is a function of the resources assigned to the virtual nodes and virtual links for the embedded VN. We reveal that the problem under consideration is formally a mixed-integer nonlinear program (MINLP) and propose an improved brute-force search algorithm to find its optimal solutions. To enhance the algorithm’s scalability and reduce the computational complexity, we further propose an adaptively weighted heuristic algorithm to obtain near-optimal solutions to the problem for large-scale networks. Simulations are conducted to show that the proposed algorithms can effectively improve network performance compared to other benchmark algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call