Abstract
Mobile edge computing (MEC) is considered as an effective technology to enhance the storage and computation capability of smart power sensors (SPSs) in smart grid networks. The MEC server is composed of multiple virtual machines (VMs) with powerful computation capability, and each VM can process multiple tasks independently, which cannot be ignored during the task computation period. In this work, we aim to minimize the energy consumption of SPSs subject to the task offloading delay by jointly optimizing the VM selection and computation resource allocation. Considering the formulated problem is nonconvex, we first utilize the linearization method to transform it into a convex optimization problem. And then, by using the branch and bound method, we propose the joint VM selection and computation resource allocation (JVMSRA) algorithm. Considering the complexity of the JVMSRA algorithm is high, we decompose the primal problem into two subproblems and solve them by utilizing the ant colony method and CVX package, respectively. Based on the solutions of the two subproblems, the resource allocation‐based ant colony (RAAC) algorithm is proposed. Simulation results show that the proposed RAAC algorithm and JVMSRA algorithm decrease by 6% and 8.8% on average compared with the benchmark algorithm, respectively, when the computation resources of each VM increase from 1 to 3GHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.