Abstract

Inorganic red‐NIR emissive materials are particularly relevant in many fields like optoelectronic, bioimaging or solar cells. Benefiting from their emission in devices implies their integration in easy‐to‐handle materials like liquid crystals, whose long‐range ordering and self‐healing abilities could be exploited and influence emission. Herein, we present red‐NIR emissive hybrid materials obtained with phosphorescent octahedral molybdenum cluster anions electrostatically associated with amphiphilic guanidinium minidendrons. Polarized optical microscopy and X‐ray analysis show that while the minidendron chloride salts self‐organize into columnar phases, their association with the dianionic metal cluster leads to layered phases. Steady‐state and time‐resolved emission investigations demonstrate the influence of the minidendron alkyl chain length on the phosphorescence of the metal cluster core.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.