Abstract

Integrating Non-Orthogonal Multiple Access (NOMA) into Fog Radio Access Networks (F-RANs) has shown to be effective in boosting the spectral efficiency, energy efficiency, connectivity, and reducing the latency, thus attracting significant research attention. However, the performance improvement of the NOMA-enabled F-RANs is at the cost of computational overheads, which are commonly neglected in their design and deployment. To address this issue, in this paper, we propose a hybrid dynamic downlink framework for NOMA-enabled F-RANs. In this framework, we first develop a novel network utility function, which takes both the network throughput and computational overheads into consideration, thus enabling us to comprehensively evaluate the performance of different access schemes for F-RANs. Based on the developed network utility function, we further formulate a network utility maximization problem, subject to practical constraints on the decoding order, power allocation, and quality-of-service. To solve this NP-hard problem, we decompose it into two subproblems, namely, a user equipment association and subchannel assignment subproblem and a power allocation subproblem. Three-dimensional matching and sequential convex programming-based algorithms are designed to solve these two subproblems, respectively. Through numerical results, we show how our proposed algorithms can achieve a good balance between the network throughput and computational overheads by judiciously adjusting the maximum transmit power of fog access points. We also show that the proposed NOMA-enabled F-RAN framework can increase, by up to 89%, the network utility, compared to OMA-based F-RANs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call