Abstract
Instead of achievable rate in the conventional association, we utilize the effective rate to design two association schemes for load balancing in heterogeneous cellular networks (HCNs), which are both formulated as such problems with maximizing the sum of effective rates. In these two schemes, the one just considers user association, but the other introduces power control to mitigate interference and reduce energy consumption while performing user association. Since the effective rate is closely related to the load of some BS and the achievable rate of some user, it can be used as a key factor of association schemes for load balancing in HCNs. To solve the association problem without power control, we design a one-layer iterative algorithm, which converts the sum-of-ratio form of original optimization problem into a parameterized polynomial form. By combining this algorithm with power control algorithm, we propose a two-layer iterative algorithm for the association problem with power control. Specially, the outer layer performs user association using the algorithm of problem without power control, and the inner layer updates the transmit power of each BS using a power update function (PUF). At last, we give some convergence and complexity analyses for the proposed algorithms. As shown in simulation results, the proposed schemes have superior performance than the conventional association, and the scheme with joint user association and power control achieves a higher load balancing gain and energy efficiency than conventional scheme and other offloading scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.