Abstract
Due to the advantages such as high flexibility, low cost and easy implementation offered by unmanned aerial vehicles (UAVs), a UAV-assisted network is regard as an appealing solution to a seamless coverage, high disaster-tolerant and on-demand wireless system. In this paper, we focus on the downlink transmission in a cache-enabled UAV-assisted wireless communication network, where UAVs cache popular content from a macro base station in advance and cooperatively transfer the content to users. We aim to minimize the average transmission latency of the system and to formulate an optimization problem that jointly optimizes the UAV location, beamforming and caching strategy. However, the formulated problem is very challenging because of its non-convexity and the highly coupled optimization variables. To solve this resulting problem efficiently, we decompose it into two subproblems, namely UAV location and beamforming optimization, and UAV caching strategy optimization. The first subproblem is an NP-hard joint optimization problem, while the second one is a linear programing problem. By adopting the first-order Taylor expansion, we propose a convex optimization algorithm based on the difference-of-convex (DC) method. Specifically, we bring out a method to apply linear approximation in the DC-based algorithm, which is particularly suitable to the problems involving complicated summations. The numerical results demonstrate that the proposed DC-based iterative optimization algorithm can efficiently reduce the average transmission latency of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.