Abstract

In this paper, a novel joint unknown input observer (JUIO) is proposed for a class of descriptor systems. The unknown input (UI) to be estimated injects additively into both the state and output equations in a state space model. To the best of our knowledge, only a few contributions in existing work address this problem directly. To begin with, by introducing an auxiliary UI, the original system is transformed into a normal form in which the output is no longer affected by UI. In this way, the negative effect brought by the UI occurring in the output measurement is removed. An interval observer is developed to obtain upper and lower boundary estimates of the output of the reformulated system. After that, an algebraic relationship between the auxiliary UI and the states is established, and a UI reconstruction (UIR) method is developed. Based on the UIR, a JUIO comprising the UIR and a Luenberger-like state observer is developed to achieve asymptotic estimations of the UI and state simultaneously. Verifiable conditions for the existence of the proposed JUIO are given with respect to the original descriptor system. Finally, a simulation example is presented to verify the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.