Abstract

Transmitter optimization, in addition to receiver optimization, contributes significantly to efficient interference suppression in multiple access and multipath channels. The system design is based on the joint optimization of the transmitter and the receiver in a synchronous multiuser channel characterized by multipath propagation. Joint optimization is represented by a linear transformation of the transmitted signals at the transmitter and a linear transformation of received signals at each receiving site that minimize the effect of multiple access and multipath interference. The minimum mean squared error between the true bit value and its estimate at the output of the receiver is taken as the cost function, subject to average and peak transmit power constraints. It is shown that joint transmitter-receiver optimization outperforms significantly either transmitter optimization or receiver-based techniques. The crucial assumption, in the case of multipath channels, is that the transmitter knows the multipath characteristics of all channels and that the channel dynamics are sufficiently slow so that multipath profiles remain essentially constant over a block of preceded bits. The practical applications can be found in indoor and cellular communications, satellite communications, or military communications where nonorthogonal signature waveforms are employed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call