Abstract

This paper addresses joint transceiver design for secure downlink communications over a multiple-input multiple-output relay system in the presence of multiple legitimate users and malicious eavesdroppers. Specifically, we jointly optimize the base station (BS) beamforming matrix, the relay station (RS) amplify-and-forward transformation matrix, and the covariance matrix of artificial noise, so as to maximize the system worst-case secrecy rate in the presence of the colluding eavesdroppers under power constraints at the BS and the RS, as well as quality of service constraints for the legitimate users. This problem is very challenging due to the highly coupled design variables in the objective function and constraints. By adopting a series of transformation, we first derive an equivalent problem that is more tractable than the original one. Then, we propose and fully develop a novel algorithm based on the penalty concave-convex procedure (penalty-CCCP) to solve the equivalent problem, where the difficult coupled constraint is penalized into the objective and the resulting nonconvex problem is solved at each iteration by resorting to the CCCP method. It is shown that the proposed joint transceiver design algorithm converges to a stationary solution of the original problem. Finally, our simulation results reveal that the proposed algorithm achieves better performance than other recently proposed transceiver designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.