Abstract

In this paper, the intelligent reflecting surface (IRS)-aided unmanned aerial vehicle (UAV) communication system is studied, where the UAV is deployed to serve the user equipment (UE) with the assistance of multiple IRSs mounted on several buildings to enhance the communication quality between UAV and UE. We aim to maximize the energy efficiency of the system, including the data rate of UE and the energy consumption of UAV via jointly optimizing the UAV's trajectory and the phase shifts of reflecting elements of IRS, when the UE moves and the selection of IRSs is considered for the energy saving purpose. Since the system is complex and the environment is dynamic, it is challenging to derive low-complexity algorithms by using conventional optimization methods. To address this issue, we first propose a deep Q-network (DQN)-based algorithm by discretizing the trajectory, which has the advantage of training time. Furthermore, we propose a deep deterministic policy gradient (DDPG)-based algorithm to tackle the case with continuous trajectory for achieving better performance. The experimental results show that the proposed algorithms achieve considerable performance compared to other traditional solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.