Abstract
This brief proposes a joint graph signal recovery and topology learning algorithm using a Variational Bayes (VB) framework in the case of non-Gaussian measurement noise. It is assumed that the graph signal is Gaussian Markov Random Field (GMRF) and the graph weights are considered statistical with the Gaussian prior. Moreover, the non-Gaussian noise is modeled using two distributions: Mixture of Gaussian (MoG), and Laplace. All the unknowns of the problem which are graph signal, Laplacian matrix, and the (Hyper)parameters are estimated by a VB framework. All the posteriors are calculated in closed forms and the iterative VB algorithm is devised to solve the problem. The efficiency of the proposed algorithm in comparison to some state-of-the-art algorithms in the literature is shown in the simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems II: Express Briefs
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.