Abstract

SummaryIoT is an essential enabler for smart cities and smart society. However, its deployment at large scale faces a big challenge: battery replacement as most IoT devices are battery‐powered or even battery‐less. In a hostile environment, it is infeasible to replace batteries. Radio frequency (RF)‐enable wireless energy transfer (WET) is a promising technology to solve this problem. Since RF is also used for wireless data communication, a data and energy integrated network (DEIN) is the way forward. Based on the DEIN technology, a time allocation model is designed in this paper to manage the RF energy and uplink data transmission in different time slots. In the IoT scenario, the DEIN's primary service is to collect environmental information such as temperature, humidity, and luminance. Therefore, the uplink data transmission of the battery‐powered/battery‐less IoT nodes deserves more attention. To increase the uplink data transmission in case of consuming less energy in the DEIN system, we propose a joint time slot and power allocation algorithm to minimize the system's consumed energy for transmitting per bit of uplink data. It aims to maximize the efficiency of the DEIN system's energy utilization, which helps to achieve an energy‐efficient DEIN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.