Abstract

Due to optical noise, electrical noise, and compression error, data hyperspectral remote sensing equipment is inevitably contaminated by various noises, which seriously affect the applications of hyperspectral data. Therefore, it is of great significance to enhance hyperspectral imaging data quality. To guarantee the spectral accuracy during data processing, band-wise algorithms are not suitable for hyperspectral data. This paper proposes a quality enhancement algorithm based on texture search and histogram redistribution combined with denoising and contrast enhancement. Firstly, a texture-based search algorithm is proposed to improve the accuracy of denoising by improving the sparsity of 4D block matching clustering. Then, histogram redistribution and Poisson fusion are used to enhance spatial contrast while preserving spectral information. Synthesized noising data from public hyperspectral datasets are used to quantitatively evaluate the proposed algorithm, and multiple criteria are used to analyze the experimental results. At the same time, classification tasks were used to verify the quality of the enhanced data. The results show that the proposed algorithm is satisfactory for hyperspectral data quality improvement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call