Abstract

Due to optical noise, electrical noise, and compression error, data hyperspectral remote sensing equipment is inevitably contaminated by various noises, which seriously affect the applications of hyperspectral data. Therefore, it is of great significance to enhance hyperspectral imaging data quality. To guarantee the spectral accuracy during data processing, band-wise algorithms are not suitable for hyperspectral data. This paper proposes a quality enhancement algorithm based on texture search and histogram redistribution combined with denoising and contrast enhancement. Firstly, a texture-based search algorithm is proposed to improve the accuracy of denoising by improving the sparsity of 4D block matching clustering. Then, histogram redistribution and Poisson fusion are used to enhance spatial contrast while preserving spectral information. Synthesized noising data from public hyperspectral datasets are used to quantitatively evaluate the proposed algorithm, and multiple criteria are used to analyze the experimental results. At the same time, classification tasks were used to verify the quality of the enhanced data. The results show that the proposed algorithm is satisfactory for hyperspectral data quality improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.