Abstract
This paper describes a new algorithm for depth image super resolution and denoising using a single depth image as input. A robust coupled dictionary learning method with locality coordinate constraints is introduced to reconstruct the corresponding high resolution depth map. The local constraints effectively reduce the prediction uncertainty and prevent the dictionary from over-fitting. We also incorporate an adaptively regularized shock filter to simultaneously reduce the jagged noise and sharpen the edges. Furthermore, a joint reconstruction and smoothing framework is proposed with an L0 gradient smooth constraint, making the reconstruction more robust to noise. Experimental results demonstrate the effectiveness of our proposed algorithm compared to previously reported methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.