Abstract
This paper presents a new Bayesian clustering method to analyse remote scenes sensed via multispectral Lidar measurements. To a first approximation, each Lidar waveform mainly consists of the temporal signature of the observed target, which depends on the wavelength of the laser source considered and which is corrupted by Poisson noise. By sensing the scene at several wavelengths, we expect a more accurate target range estimation and a more efficient spectral analysis of the scene. Thanks to its spectral classification capability, the proposed hierarchical Bayesian model, coupled with an efficient Markov chain Monte Carlo algorithm, allows the estimation of depth images together with reflectivity-based scene segmentation images. The proposed methodology is illustrated via experiments conducted with real multispectral Lidar data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.