Abstract
AbstractAimSpecies distribution models are important tools used to study the distribution and abundance of organisms relative to abiotic variables. Dynamic local interactions among species in a community can affect abundance. The abundance of a single species may not be at equilibrium with the environment for spreading invasive species and species that are range shifting because of climate change.Innovation: We develop methods for incorporating temporal processes into a spatial joint species distribution model for presence/absence and ordinal abundance data. We model non‐equilibrium conditions via a temporal random effect and temporal dynamics with a vector‐autoregressive process allowing for intra‐ and interspecific dependence between co‐occurring species. The autoregressive term captures how the abundance of each species can enhance or inhibit its own subsequent abundance or the subsequent abundance of other species in the community and is well suited for a ‘community modules’ approach of strongly interacting species within a food web. R code is provided for fitting multispecies models within a Bayesian framework for ordinal data with any number of locations, time points, covariates and ordinal categories.Main conclusionsWe model ordinal abundance data of two invasive insects (hemlock woolly adelgid and elongate hemlock scale) that share a host tree and were undergoing northwards range expansion in the eastern U.S.A. during the period 1997–2011. Accounting for range expansion and high inter‐annual variability in abundance led to improved estimation of the species–environment relationships. We would have erroneously concluded that winter temperatures did not affect scale abundance had we not accounted for the range expansion of scale. The autoregressive component revealed weak evidence for commensalism, in which adelgid may have predisposed hemlock stands for subsequent infestation by scale. Residual spatial dependence indicated that an unmeasured variable additionally affected scale abundance. Our robust modelling approach could provide similar insights for other community modules of co‐occurring species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.