Abstract

Acoustic emission (AE) technique has been widely used for the classification of rub-impact in rotating machinery due to its high sensitivity, wide frequency response range and dynamic detection property. However, it is still unsatisfied to effectively classify the rub-impact in rotating machinery under complicated environment using traditional classification method tailored to a single AE sensor. Recently, motivated by the theory of compressed sensing, a sparse representation based classification (SRC) method has been successfully used in many classification applications. Moreover, when dealing with multiple measurements the joint sparse representation based classification (JSRC) method could improve the classification accuracy with the aid of employing structural complementary information from each measurement. This paper investigates the use of multiple AE sensors for the classification of rub-impact in rotating machinery based on the JSRC method. First, the cepstral coefficients of each AE sensor are extracted as the features for the rub-impact classification. Then, the extracted cepstral features of all AE sensors are concatenated as the input matrix for the JSRC based classifier. Last, the backtracking simultaneous orthogonal matching pursuit (BSOMP) algorithm is proposed to solve the JSRC problem aiming to get the rub-impact classification results. The BSOMP has the advantages of not requiring the sparsity to be known as well as deleting unreliable atoms. Experiments are carried out on real-world data sets collected from in our laboratory. The results indicate that the JSRC method with multiple AE sensors has higher rub-impact classification accuracies when compared to the SRC method with a single AE sensor and the proposed BSOMP algorithm is more flexible and it performs better than the traditional SOMP algorithm for solving the JSRC method.

Highlights

  • Rub-impact classification is one of the most important issues in the research filed of large rotating machinery

  • Inspired by the amazing performance of the JSCR method for the multiple measurements classification problem, in this paper we investigate the use of multiple Acoustic emission (AE) sensors for the classification of rub-impact in rotating machinery with the aid of the joint sparse representation based classification (JSRC) method

  • Making a classification with multiple measurements using the joint sparse representation based classification (JSRC) method has shown its advantages to improve the classification accuracy in transient acoustic signal classification [11], so in this paper we investigate using the JSRC method for the classification of rub-impact in rotating machinery with multiple AE sensors

Read more

Summary

Introduction

Rub-impact classification is one of the most important issues in the research filed of large rotating machinery. During the past few years, plenty of methods have been proposed in order to extract robust features of the AE signal employed in the rub-impact classification in rotating machinery. Following the MAE theory, an analytic expression of the AE signal was given and used as feature representation for the rub-impact classification [4]. JOINT SPARSE REPRESENTATION BASED CLASSIFICATION OF RUB-IMPACT IN ROTATING MACHINERY WITH MULTIPLE ACOUSTIC EMISSION SENSORS. Inspired by the amazing performance of the JSCR method for the multiple measurements classification problem, in this paper we investigate the use of multiple AE sensors for the classification of rub-impact in rotating machinery with the aid of the JSRC method.

Feature extraction
Problem formulation
SOMP algorithm
BSOMP algorithm
Find the candidate set by choosing all the indexes of atoms that satisfying
Experiment
Method
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.