Abstract

Few-shot Named Entity Recognition (NER) is a challenging task that involves identifying new entity types using a limited number of labeled instances for training. Currently, the majority of Few-shot NER methods are based on span, which pay more attention to the boundary information of the spans as candidate entities and the entity-level information. However, these methods often overlook token-level semantic information, which can limit their effectiveness. To address this issue, we propose a novel Joint Span and Token (JST) framework that integrates both the boundary information of an entity and the semantic information of each token that comprises an entity. The JST framework employs span features to extract the boundary features of the entity and token features to extract the semantic features of each token. Additionally, to reduce the negative impact of the Other class, we introduce a method to separate named entities from the Other class in semantic space, which helps to improve the distinction between entities and the Other class. In addition, we used GPT to do data augmentation on the support sentences, generating similar sentences to the original ones. These sentences increase the diversity of the sample and the reliability of our model. Our experimental results on the Few-NERD11https://ningding97.github.io/fewnerd/. and SNIPS22https://github.com/AtmaHou/FewShotTagging. datasets demonstrate that our model outperforms existing methods in terms of performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.