Abstract

This paper presents a 3-D medical image coding method featuring two major improvements to previous work on 3-D region of interest (RoI) coding for telemedicine applications. Namely, 1) a data prioritization scheme that allows coding of multiple 3-D-RoIs; and 2) a joint/source channel coding scheme that allows prioritized transmission of multiple 3-D-RoIs over wireless channels. The method, which is based on the 3-D integer wavelet transform and embedded block coding with optimized truncation with 3-D context modeling, generates scalable and error-resilient bit streams with 3-D-RoI decoding capabilities. Coding of multiple 3-D-RoIs is attained by prioritizing the wavelet-transformed data according to a Gaussian mixed distribution, whereas error resiliency is attained by employing the error correction capabilities of rate-compatible punctured turbo codes. The robustness of the proposed method is evaluated for transmission of real 3-D medical images over Rayleigh-fading channels with a priori knowledge of the channel condition. Evaluation results show that the proposed coding method provides a superior performance compared to equal error protection and unequal error protection techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call