Abstract

This paper aims to optimize the overall video quality and traffic performance for multi-rate video multicast over hybrid wired/wireless networks. In order to perform layered utility maximization over tiered networks, we propose a joint source-network flow optimization scheme where individual layers of the scalable video stream are imposed on their optimal multicast paths and associated rates for the highest sustainable layered video quality with minimum costs. It sufficiently guarantees that each destination node accesses progressive layered stream in an incremental order, considers network coding across overlapping paths to destination nodes for decent multicast capacity, and addresses the link contention problem during wireless transmission. We formulate the problem into convex programming with the objective to minimize the total rate-distortion variations between layers. Using primal decomposition and the primal-dual approach, we develop a decentralized algorithm with two levels of optimization. The numerical and packet-level results compare extensive performance under different control conditions over coded and non-coded hybrid networks. It demonstrates that the proposed algorithm could actually achieve the max-flow throughput and provide better video quality with optimal layered access for heterogeneous receivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.