Abstract

Visual perception is a critical task for autonomous driving. Understanding the driving environment in real time can assist a vehicle in driving safely. In this study, we proposed a multi-task learning framework for simultaneous traffic object detection, drivable area segmentation, and lane line segmentation in an efficient way. Our network encoder extracts features from an input image and three decoders at multilevel branches handle specific tasks. The decoders share the feature maps with more similar tasks for joint semantic understanding. Multiple loss functions are automatically weighted summed to learn multiple objectives simultaneously. We demonstrate the effectiveness of this framework on a BerkeleyDeepDrive100K (BDD100K) dataset. In the experiment, the proposed method outperforms the competing multi-task and single-task methods in terms of accuracy and maintains a real-time inference at more than 37 frames per second.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.