Abstract
A number of vision problems such as zero-shot learning and person re-identification can be considered as cross-class transfer learning problems. As mid-level semantic properties shared cross different object classes, attributes have been studied extensively for knowledge transfer across classes. Most previous attribute learning methods focus only on human-defined/nameable semantic attributes, whilst ignoring the fact there also exist undefined/latent shareable visual properties, or latent attributes. These latent attributes can be either discriminative or non-discriminative parts depending on whether they can contribute to an object recognition task. In this work, we argue that learning the latent attributes jointly with user-defined semantic attributes not only leads to better representation but also helps semantic attribute prediction. A novel dictionary learning model is proposed which decomposes the dictionary space into three parts corresponding to semantic, latent discriminative and latent background attributes respectively. Such a joint attribute learning model is then extended by following a multi-task transfer learning framework to address a more challenging unsupervised domain adaptation problem, where annotations are only available on an auxiliary dataset and the target dataset is completely unlabelled. Extensive experiments show that the proposed models, though being linear and thus extremely efficient to compute, produce state-of-the-art results on both zero-shot learning and person re-identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.