Abstract
The fast pandemics of coronavirus disease (COVID-19) has led to a devastating influence on global public health. In order to treat the disease, medical imaging emerges as a useful tool for diagnosis. However, the computed tomography (CT) diagnosis of COVID-19 requires experts’ extensive clinical experience. Therefore, it is essential to achieve rapid and accurate segmentation and detection of COVID-19. This paper proposes a simple yet efficient and general-purpose network, called Sequential Region Generation Network (SRGNet), to jointly detect and segment the lesion areas of COVID-19. SRGNet can make full use of the supervised segmentation information and then outputs multi-scale segmentation predictions. Through this, high-quality lesion-areas suggestions can be generated on the predicted segmentation maps, reducing the diagnosis cost. Simultaneously, the detection results conversely refine the segmentation map by a post-processing procedure, which significantly improves the segmentation accuracy. The superiorities of our SRGNet over the state-of-the-art methods are validated through extensive experiments on the built COVID-19 database.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.