Abstract

User scheduling and multiuser multi-antenna (MU-MIMO) transmission are at the core of high-rate data-oriented downlink schemes of the next-generation of cellular systems (e.g., LTE-Advanced). Scheduling selects groups of users according to their channels vector directions and SINR levels. However, when scheduling is applied independently in each cell, the inter-cell interference (ICI) power at each user receiver is not known in advance since it changes at each new scheduling slot depending on the scheduling decisions of all interfering base stations. In order to cope with this uncertainty, we consider the joint operation of scheduling, MU-MIMO beamforming and Automatic Repeat reQuest (ARQ). We develop a game-theoretic framework for this problem and build on stochastic optimization techniques in order to find optimal scheduling and ARQ schemes. Particularizing our framework to the case of "outage service rates", we obtain a scheme based on adaptive variable-rate coding at the physical layer, combined with ARQ at the Logical Link Control (ARQ-LLC). Then, we present a novel scheme based on incremental redundancy Hybrid ARQ (HARQ) that is able to achieve a throughput performance arbitrarily close to the "genie-aided service rates", with no need for a genie that provides non-causally the ICI power levels. The novel HARQ scheme is both easier to implement and superior in performance with respect to the conventional combination of adaptive variable-rate coding and ARQ-LLC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.