Abstract
In this paper, we introduce a multi-feature decomposition approach to the problem of synthetic aperture radar (SAR) image reconstruction from under-sampled data in both range and azimuth directions. Conventional SAR image formation methods may produce images that are not appropriate for interpretation tasks such as segmentation and automatic target recognition. We deal with this problem using an efficient joint SAR image reconstruction–decomposition framework in which features of interest are enhanced and decomposed simultaneously. Unlike conventional methods, our proposed framework provides multiple segment images along with a composite SAR image. In the composite image not only the resolution is improved but also both the speckle and sidelobe artifacts are reduced. In the decomposed images, different components can be roughly attributed to different potential segments, which facilitate the subsequent interpretation tasks such as shape-based recognition or region segmentation. Moreover, these decomposed images contain easier-to-segment regions rather than taking the entire scene for segmenting the feature of interest. By formulating the SAR image reconstruction as a low-rank plus multi-feature decomposition problem, the optimization problem is solved based on the alternating direction method of multipliers. Using combined dictionaries, multiple transform-sparse components are represented efficiently by a linear combination of multiple sparsifying matrices associated with the features of interest in the scene. Our proposed method jointly reconstructs and decomposes different pieces of the imaged SAR scene, in particular the low-rank part of the background and sparsely represented features of interest, from under-sampled observed data. Using extensive experimental results we show the effectiveness of the proposed method on both synthetic and real SAR images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.