Abstract
A joint robust transmit/receive adaptive beamforming for multiple-input multipleoutput (MIMO) radar based on probability-constrained optimization approach is developed in the case of Gaussian and arbitrary distributed mismatch present in both the transmit and receive signal steering vectors. A tight lower bound of the probability constraint is also derived by using duality theory. The formulated probability-constrained robust beamforming problem is nonconvex and NP-hard. However, we reformulate its cost function into a bi-quadratic function while the probability constraint splits into transmit and receive parts. Then, a block coordinate descent method based on second-order cone programming is developed to address the biconvex problem. Simulation results show an improved robustness of the proposed beamforming method as compared to the worst-case and other existing state-of-the-art joint transmit/receive robust adaptive beamforming methods for MIMO radar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.