Abstract
Poor visual quality of color retinal images greatly interferes with the analysis and diagnosis of the ophthalmologist. In this paper, we propose an enhancement method for low-quality color retinal images based on the combination of the Retinex-based enhancement method and the contrast limited adaptive histogram equalization (CLAHE) algorithm. More specifically, we first estimate the illumination map of the entire image by constructing a Retinex-based variational model. Then, we restore the reflectance map by removing the illumination modified by Gamma correction and directly enable the reflectance as the initial enhancement. To further enhance the clarity and contrast of blood vessels while avoiding color distortion, we apply CLAHE on the luminance channel in CIELUV color space. We collect 60 low-quality color retinal images as our test dataset to verify the reliability of our proposed method. Experimental results show that the proposed method is superior to the other three related methods, both in terms of visual analysis and quantitative evaluation while testing on our dataset. Additionally, we apply the proposed method to four publicly available datasets, and the results show that our methods may be helpful for the detection and analysis of retinopathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.