Abstract
Multi-modal transportation recommendation has a goal of recommending a travel plan which considers various transportation modes, such as walking, cycling, automobile, and public transit, and how to connect among these modes. The successful development of multi-modal transportation recommendation systems can help to satisfy the diversified needs of travelers and improve the efficiency of transport networks. However, existing transport recommender systems mainly focus on unimodal transport planning. To this end, in this paper, we propose a joint representation learning framework for multi-modal transportation recommendation based on a carefully-constructed multi-modal transportation graph. Specifically, we first extract a multi-modal transportation graph from large-scale map query data to describe the concurrency of users, Origin-Destination (OD) pairs, and transport modes. Then, we provide effective solutions for the optimization problem and develop an anchor embedding for transport modes to initialize the embeddings of transport modes. Moreover, we infer user relevance and OD pair relevance, and incorporate them to regularize the representation learning. Finally, we exploit the learned representations for online multimodal transportation recommendations. Indeed, our method has been deployed into one of the largest navigation Apps to serve hundreds of millions of users, and extensive experimental results with real-world map query data demonstrate the enhanced performance of the proposed method for multimodal transportation recommendations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.