Abstract

Utilizing a general joint remote state preparation (JRSP) model, we investigate the JRSP of an arbitrary two-qubit quantum state in noisy environments. Two important decoherence noise models, the amplitude-damping noise and the phase-damping noise, have been considered in our paper. Our investigation of the noisy environment mainly focuses on the process of distributing the channel state. We use fidelity to describe how close the output state with the prepared state are, and how much information has been lost in the transmission. Interestingly, studies show that, if the initial state is successfully prepared, the fidelities in these two cases will only depend on the amplitude parameter of the initial state and the decoherence noisy rate, but have nothing to do with the phase information. Finally, we make some discussions for these two cases to show that in which noisy environment more information will be lost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.