Abstract
Missing covariates data is a common issue in generalized linear models (GLMs). A model-based procedure arising from properly specifying joint models for both the partially observed covariates and the corresponding missing indicator variables represents a sound and flexible methodology, which lends itself to maximum likelihood estimation as the likelihood function is available in computable form. In this paper, a novel model-based methodology is proposed for the regression analysis of GLMs when the partially observed covariates are categorical. Pair-copula constructions are used as graphical tools in order to facilitate the specification of the high-dimensional probability distributions of the underlying missingness components. The model parameters are estimated by maximizing the weighted log-likelihood function by using an EM algorithm. In order to compare the performance of the proposed methodology with other well-established approaches, which include complete-cases and multiple imputation, several simulation experiments of Binomial, Poisson and Normal regressions are carried out under both missing at random and non-missing at random mechanisms scenarios. The methods are illustrated by modeling data from a stage III melanoma clinical trial. The results show that the methodology is rather robust and flexible, representing a competitive alternative to traditional techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.