Abstract
In this paper, we develop a deep neural network based joint classification-regression approach to identify microglia, a resident central nervous system macrophage, in the brain using fluorescence lifetime imaging microscopy (FLIM) data. Microglia are responsible for several key aspects of brain development and neurodegenerative diseases. Accurate detection of microglia is key to understanding their role and function in the CNS, and has been studied extensively in recent years. In this paper, we propose a joint classification-regression scheme that can incorporate fluorescence lifetime data from two different autofluorescent metabolic co-enzymes, FAD and NADH, in the same model. This approach not only represents the lifetime data more accurately but also provides the classification engine a more diverse data source. Furthermore, the two components of model can be trained jointly which combines the strengths of the regression and classification methods. We demonstrate the efficacy of our method using datasets generated using mouse brain tissue which show that our joint learning model outperforms results on the coenzymes taken independently, providing an efficient way to classify microglia from other cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.