Abstract
Let R be a Cohen-Macaulay local ring of dimension d, multiplicity e and embedding dimension v. Abhyankar [1] showed that v − d + 1 ≤ e. When equality holds, R is said to have minimal multiplicity. The purpose of this paper is to study the preservation of this property under the formation of Rees algebras of several ideals in a 2-dimensional Cohen-Macaulay (CM for short) local ring. Our main tool is the theory of joint reductions and mixed multiplicities developed by Rees [9] and Teissier[12].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.