Abstract

Humans are able to reason from multiple sources to arrive at the correct answer. In the context of Multiple Choice Question Answering (MCQA), knowledge graphs can provide subgraphs based on different combinations of questions and answers, mimicking the way humans find answers. However, current research mainly focuses on independent reasoning on a single graph for each question–answer pair, lacking the ability for joint reasoning among all answer candidates. In this paper, we propose a novel method KMSQA, which leverages multiple subgraphs from the large knowledge graph ConceptNet to model the comprehensive reasoning process. We further encode the knowledge graphs with shared Graph Neural Networks (GNNs) and perform joint reasoning across multiple subgraphs. We evaluate our model on two common datasets: CommonsenseQA (CSQA) and OpenBookQA (OBQA). Our method achieves an exact match score of 74.53% on CSQA and 71.80% on OBQA, outperforming all eight baselines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call