Abstract

This paper presents a novel joint rate adaptation and relay selection scheme for multi-relay networks adopting half-duplex best-relay decode-and-forward protocol. The proposed scheme aims to maximize the overall transmission rate when relays are allowed to forward messages using different rates from the source. It is shown that the proposed scheme outperforms the conventional adaptive scheme in terms of the spectral efficiency (e.g. by 10.1% improvement for SNR=10 dB). Furthermore, in order to reduce signaling overhead of the proposed scheme, a number of joint discrete-rate adaptation and relay selection approaches are proposed for both non-reciprocal and reciprocal channels. The relay selection is basically a two-stage scheme. At the rm first stage, a set of relays are selected based on mixed channel quality information (CQI), i.e., the knowledge of CQI varies for different links; at the second stage, the best relay within the set is selected based on instantaneous CQI, which is obtained through carefully designed signaling protocols. It is shown that the proposed discrete-rate adaptation schemes can offer comparable spectral efficiency to the conventional adaptive scheme with significantly reduced signaling overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.