Abstract

Cubic gallium nitride (GaN) films are analyzed with highresolution X-ray diffraction (HRXRD) and Raman spectroscopy. Several cubic GaN layers were grown on 3C-SiC (001) substrate by radio-frequency plasma-assisted molecular beam epitaxy. The layer thickness of the cubic GaN was varied between 75 and 505 nm. The HRXRD analysis reveals a reduction of the full-width at half-maximum (FWHM) of omega scans for growing layer thicknesses, which is caused by a partial compensation of defects. The Raman characterization confirms well-formed c-GaN layers. A more detailed examination of the longitudinal optical mode hints at a correlation of the FWHM of the Raman mode with the dislocation density, which shows the possibility to determine dislocation densities by Ramanspectroscopy on a micrometer scale, which is not possible by HRXRD. Furthermore, this Raman analysis shows that normalized Raman spectra present an alternative way to determine layer thicknesses of thin GaN films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.