Abstract

ABSTRACT Multiwavelength observations of pulsar emission properties are powerful means to constrain their magnetospheric activity and magnetic topology. Usually a star centred magnetic dipole model is invoked to explain the main characteristics of this radiation. However, in some particular pulsars where observational constraints exist, such simplified models are unable to predict salient features of their multiwavelength emission. This paper aims to carefully model the radio and X-ray emission of PSR J1136+1551 with an off-centred magnetic dipole to reconcile both wavelength measurements. We simultaneously fit the radio pulse profile with its polarization and the thermal X-ray emission from the polar cap hotspots of PSR J1136+1551. We are able to pin down the parameters of the non-dipolar geometry (which we have assumed to be an offset dipole) and the viewing angle, meanwhile accounting for the time lag between X-ray and radio emission. Our model fits the data if the off-centred magnetic dipole lies about 20 per cent below the neutron star surface. We also expect very asymmetric polar cap shapes and sizes, implying non-antipodal and non-identical thermal emission from the hotspots. We conclude that a non-dipolar surface magnetic field is an essential feature to explain the multiwavelength aspects of PSR J1136+1551 and other similar pulsars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.