Abstract

The novel concept of non-orthogonal multiple access (NOMA) aided joint radar and multicast-unicast communication (Rad-MU-Com) is investigated. Employing the same spectrum resource, a multi-input-multi-output (MIMO) dual-functional radar-communication (DFRC) base station detects the radar-centric user (R-user), while transmitting mixed multicast-unicast messages both to the R-user and to the communication-centric user (C-user). In particular, the multicast information is intended for both the R- and C-users, whereas the unicast information is only intended for the C-user. More explicitly, NOMA is employed to facilitate this double spectrum sharing, where the multicast and unicast signals are superimposed in the power domain and the superimposed communication signals are also exploited as radar probing waveforms. A beamformer-based NOMA-aided joint Rad-MU-Com framework is proposed for the system having a single R-user and a single C-user. Based on this framework, the unicast rate maximization problem is formulated by optimizing the beamformers employed, while satisfying the rate requirement of multicast and the predefined accuracy of the radar beam pattern. The resultant non-convex optimization problem is solved by a penalty-based iterative algorithm to find a high-quality near-optimal solution. Finally, our numerical results reveal that significant performance gains can be achieved by the proposed scheme over the benchmark schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call