Abstract

The joint radar and communications (JRC) waveform often has a high range sidelobe, which will degrade the target detection performance of an automotive JRC system. To solve this problem, a joint radar and communications complementary waveform group (JRC-CWG) design method is proposed in this paper by exploiting the philosophy of the complementary sequence. In the JRC-CWG, the traditional unimodular communications waveforms, such as the binary phase shift keying (BPSK) waveform, are used to perform the communications function. The sum of the autocorrelation function (SACF) of JRC-CWG is optimized to minimize the sidelobe level. Furthermore, considering that the JRC-CWG has poor Doppler resilience, a Doppler-resilient joint radar and communications complementary waveform (DR-JRC-CWG) design method is proposed to improve the Doppler resilience. Finally, the simulation results show that the proposed JRC-CWG and DR-JRC-CWG have superior radar performances without the degradation in communications performance in terms of the bit error rate (BER).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call