Abstract
AbstractLinear quantile regression is a powerful tool to investigate how predictors may affect a response heterogeneously across different quantile levels. Unfortunately, existing approaches find it extremely difficult to adjust for any dependency between observation units, largely because such methods are not based upon a fully generative model of the data. For analysing spatially indexed data, we address this difficulty by generalizing the joint quantile regression model of Yang and Tokdar (Journal of the American Statistical Association, 2017, 112(519), 1107–1120) and characterizing spatial dependence via a Gaussian or t-copula process on the underlying quantile levels of the observation units. A Bayesian semiparametric approach is introduced to perform inference of model parameters and carry out spatial quantile smoothing. An effective model comparison criteria is provided, particularly for selecting between different model specifications of tail heaviness and tail dependence. Extensive simulation studies and two real applications to particulate matter concentration and wildfire risk are presented to illustrate substantial gains in inference quality, prediction accuracy and uncertainty quantification over existing alternatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.