Abstract

Many existing grid resource allocation and scheduling algorithms mainly focus on isolated layers of the grid architecture. The inflexibility of the strict layering structure results in an inefficient utilization of the grid resources. This paper takes a system view of the computational grid and aims to jointly optimize global QoS by adopting cross-layer design. Cross-layer design is based on information exchange and joint optimization among multiple grid layers. Parameters from different layers are provided to a cross-layer optimizer, which selects the values of the layer specific parameters maximizing joint global QoS. The objective of the paper is to jointly optimize the parameters of all layers in a decentralized optimization problem and decompose joint QoS optimization into three sub problems at fabric layer, collective layer and application layer. In simulation part, we compare the performance of the global joint QoS optimization approach with application layer local optimization and resource layer local optimization approach, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call